Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca wave initiation
نویسندگان
چکیده
Mast cell activation initiated by antigen-mediated crosslinking of IgE receptors results in stimulated exocytosis of secretory lysosomes in the process known as degranulation. Much has been learned about the molecular mechanisms important for this process, including the crucial role of Ca mobilization, but spatio-temporal relationships between stimulated Ca mobilization and granule exocytosis are incompletely understood. Here we use a novel imaging-based method that uses fluorescein isothiocyanate (FITC)–dextran as a reporter for granule exocytosis in RBL mast cells and takes advantage of the pH sensitivity of FITC. We demonstrate the selectivity of FITC– dextran, accumulated by fluid-phase uptake, as a marker for secretory lysosomes, and we characterize its capacity to delineate different exocytotic events, including full fusion, kiss-and-run transient fusion and compound exocytosis. Using this method, we find strong dependence of degranulation kinetics on the duration of cell to substrate attachment. We combine imaging of degranulation and Ca dynamics to demonstrate a spatial relationship between the sites of Ca wave initiation in extended cell protrusions and exocytosis under conditions of limited antigen stimulation. In addition, we find that the spatially proximal Ca signaling and secretory events correlate with participation of TRPC1 channels in Ca mobilization.
منابع مشابه
Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation.
Mast cell activation initiated by antigen-mediated crosslinking of IgE receptors results in stimulated exocytosis of secretory lysosomes in the process known as degranulation. Much has been learned about the molecular mechanisms important for this process, including the crucial role of Ca(2+) mobilization, but spatio-temporal relationships between stimulated Ca(2+) mobilization and granule exoc...
متن کاملCell biology of Ca-triggered exocytosis
Ca triggers many forms of exocytosis in different types of eukaryotic cells, for example synaptic vesicle exocytosis in neurons, granule exocytosis in mast cells, and hormone exocytosis in endocrine cells. Work over the past two decades has shown that synaptotagmins function as the primary Ca-sensors for most of these forms of exocytosis, and that synaptotagmins act via Ca-dependent interaction...
متن کاملSequestration of phosphoinositides by mutated MARCKS effector domain inhibits stimulated Ca2+ mobilization and degranulation in mast cells
Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequ...
متن کاملA Novel Function of Noc2 in Agonist-Induced Intracellular Ca2+ Increase during Zymogen-Granule Exocytosis in Pancreatic Acinar Cells
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG ...
متن کاملCell biology of Ca2+-triggered exocytosis.
Ca(2+) triggers many forms of exocytosis in different types of eukaryotic cells, for example synaptic vesicle exocytosis in neurons, granule exocytosis in mast cells, and hormone exocytosis in endocrine cells. Work over the past two decades has shown that synaptotagmins function as the primary Ca(2+)-sensors for most of these forms of exocytosis, and that synaptotagmins act via Ca(2+)-dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012